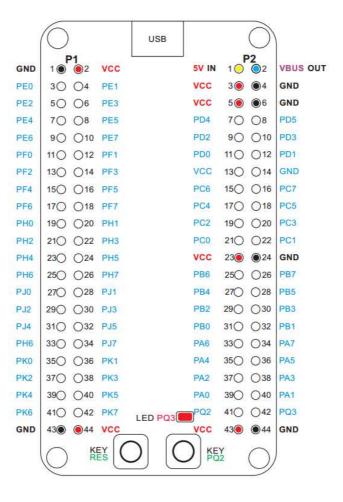
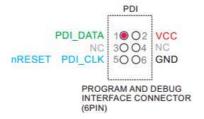

Microcontroller Module NanoXmegaA1U


Table of contents


Pin Assignment	3
Power Supply Configuration	4
Jser LED	
Jser Keys	
Clock	6
Program and debug connector	
_ayout	
Xmega128A1U Features	

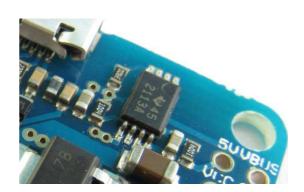
Microcontroller Module NanoXmegaA1U Key Features

- Microcontroller module based on AVR Xmega128A1U microcontroller (Atmel®), maximum CPU frequency 32MHz
- Program-and-debug Connector (6pin) pin-compatible to **PDI interface** of Atme^{1®}-ICE Programmer
- Power Switch TPS2113APW (typ. 84mOhm on-resistance)
- Power supply configuration:
 - o External 5V Power Supply connected to P2-1 Pin or
 - o VBUS
- On board LDO voltage regulator 3,3V
- Micro USB-Connector
- USB section ESD and EMI protected (Filters and Suppressor diode array: VBUS, D+, D-)
- USB Detection Resistor Divider connected to PK7
- User-Key Reset the microcontroller
- User-Key connected to PQ2
- User-LED connected to PQ3
- C-L filter connected to AVCC pin, decoupling capacitors connected to VCC path
- Microcontroller IO pins are routed to pinheader connector pads P1 and P2 (2 x 44-pin 2-row, contact spacing 2,54mm, module fits on 2,54mm perfboard)
- Quartz 16MHz connected to XTAL pins
- Quartz 32,768kHz connected to TOSC pins
- Pcb dimensions 38mm x 66mm
- Maximum module high of 6,1mm
- Pcb technology: FR4, two layers, solder resist, surface immersion gold, RoHS

Pin Assignment

Power Supply Configuration

The microcontroller module can be powered via **USB VBUS** or an **external 5V** supply voltage.


If an external 5V supply voltage is applied, this voltage has priority over USB VBUS voltage.

The linear low-drop-out regulator **TS1117** regulates the 3,3V supply voltage VCC of the microcontroller.

The TS1117 has a typical dropout voltage of 1,3V @ 1A, maximum 1,5V.

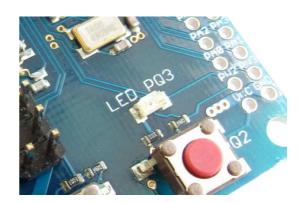
The power switch **TPS2113A** blocks reverse and cross-conduction. The current through this switch is limited to 641mA (I_{limit} =250/ R_{limit} , R_{limit} =3900hm). This is a typical value and according to the datasheet we can expect a minimum of 510mA and a maximum of 800mA. The power switch TPS2113A has an on-resistance of typically 84mOhm and maximal 110mOhm.

USB cable connected	External 5V connected at P2-1	Voltage source
Yes	No	VBUS
Yes	Yes external 5V connected to P2-1	
No	Yes	external 5V connected to P2-1

Precausion using VBUS connected to P2-2 (VBUS OUT):

USB VBUS voltage 5V is always available at pin P2-2. USB VBUS is direct connected to this pin!

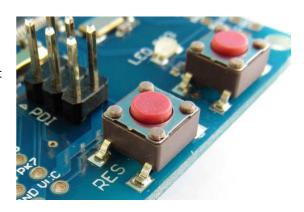
If supplying external components with VBUS voltage


PLEASE NOTE THE MAXIMUM CURRENT CAPABILITY OF USB VBUS! DO NOT CONNECT EXTERNAL SUPPLY VOLTAGE TO THIS PIN!

Power Supply Voltage

	Pin	Condition		Value		Unit
			min	typ	max	
External Supply Voltage applied to Pin P2-1	P2-1		4,7	5,0	5,5	V

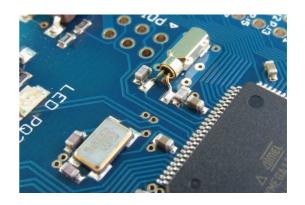
User LED


The cathode of the user on-board LED is connected to PQ3.

User Keys

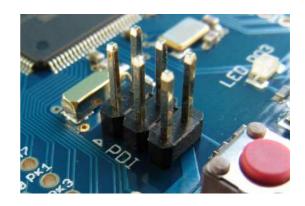
Press the key RES to reset the microcontroller.

The right user key is connected to PQ2. The signal PQ2 is set to low level if key is pressed.

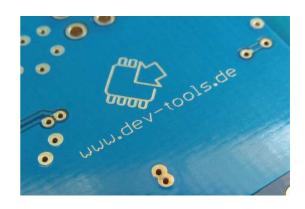

Clock

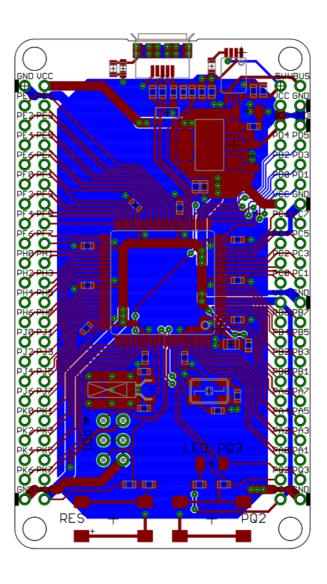
Quartz 16MHz connected to XTAL (PR0, PR1) pins (CLKcpu = 32MHz: XTAL 16MHz and PLL x2) Quartz 32,768kHz connected to TOSC (PQ0, PQ1) pins

Note:

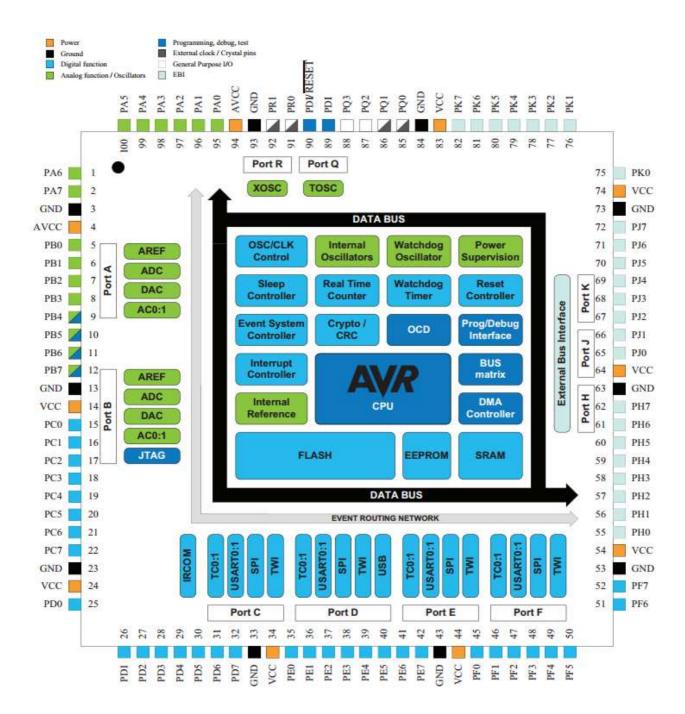

CLKusb = 48MHz

For example you can use internal RC oscillator OSCRC32 with AutoCal and ID USB Sync.


Program and debug connector


Pin	Signal
1	PDI_DATA
2	VCC
3	NC
4	NC
5	PDI_CLK
6	GND

Layout


PCB Size	38mm x 66mm, 1,6mm thickness
Design	2 Layers, SMD Top Layer
Material	FR4
Surface	Immersion Gold
Soldermask	Dev-Tools blue
Silk Skreen	White
Panel Processing	Milled, Rounded Corners
E-Test	Yes
RoHS	Yes

Xmega128A1U Features

Pins	100	
General Purpose I/O-pins (GPIOs)	78	
Flash	128 kBytes	
SRAM	8 kBytes	
EEPROM	2048 Bytes	
Max. Operating Freq. (MHz)	32 MHz	
Ext Interrupts	78	
USB Transceiver	1	
USB Speed	Full Speed	
USB Interface	Device	
SPI	12	
WI (I2C)	4	
UART	8	
ADC Channels	16	
ADC Resolution (bits)	12	
ADC Speed (ksps)	2000	
Analog Comparators	4	
DAC Channels	4	
DAC Resolution (bits)	12	
Temp. Sensor	Yes	
Crypto Engine	AES/DES	
External Bus Interface	1	
picoPower	Yes	
Operating Voltage (Vcc)	1.6 to 3.6	
Timers	8	
Output Compare Channels	24	
Input Capture Channels	24	
PWM Channels	24	
32kHz RTC	Yes	
Calibrated RC Oscillator	Yes	
Watchdog	Yes	
Quadrature Decoder Channels	3	
Debug Interface	JTAG and PDI	

Intended use

This product is intended to use as development and evaluation board for developing microcontroller based applications.

Warning

To avoid damage due to electrostatic discharge (ESD), appropriate measures for ESD protection are to be taken for handling and only appropriately trained personnel should handle the board.

Disclaimer

This product is not authorized for use in safety-critical applications (such as life support) where a failure of this product would reasonably be expected to cause severe personal injury or death. RODENHAUSEN ELECTRONIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does RODENHAUSEN ELECTRONIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in this documentation and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. RODENHAUSEN ELECTRONIC reserve the right to make corrections, modifications, enhancements, improvements, and other changes to this product (including changes of layout, schematic and documentation) at any time and to discontinue this product without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Note

No part of this documentation, including the products and software described in it, may be reproduced, transmitted, transcribed or translated into any language in any form or by any means, except documentation kept by the purchaser for backup purposes, without the express written permission of RODENHAUSEN ELECTRONIC. Products and corporate names appearing in this documentation may or may not be registered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to the owners' benefit, without intent to infringe.